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The investigations refer to the influence of isotropic upstream turbulence on the stability
behaviour of normal and rotated triangular tube arrays of different pitch-to-diameter ratios.
The excitation is due to air cross-flow in a wind tunnel. The experimental apparatus allows the
measurement of the stability boundaries of a fully flexible bundle as well as single flexibly
mounted tubes with variable equilibrium position in otherwise fixed arrays. By using a turbu-
lence grid with variable geometric properties, it is possible to produce isotropic turbulence with
variable turbulence intensity Tu and scale length L, at the inlet of the bundle. These values were
determined using hot-wire anemometers. The investigations show clearly a stabilization with
increasing turbulence in case of a single flexibly mounted tube in an otherwise fixed array.
© 1998 Academic Press Limited.

1. INTRODUCTION

TUBE FAILURES IN HEAT EXCHANGERS are often caused by excessive vibration, especially
fluidelastic instability is a dangerous excitation mechanism. In tube arrays subjected to
cross-flow, fluidelastic instability has a great potential for short-term damage. Because of
the resulting large amplitudes, the onset of this phenomenon must be avoided in any case.

Another excitation mechanism is buffeting, caused by turbulence, which affects the
long-term behaviour and also can influence the stability boundaries. The last mentioned
effect will be examined in the following.

It has been shown that a flow disturbance inside the tube array can change the stability
behaviour of a single flexibly mounted tube in the first few rows of an otherwise fixed array
in a significant way, cf. Romberg & Popp (1996). There, very thin Prandtl trip-wires were
pasted on the surface of the tubes without affecting the flow capacity. Finally, the investiga-
tion of the stability behaviour indicated a full suppression of the fluid-damping-controlled
instability (galloping) for certain array configurations.

It is a matter of fact that a tube bundle generates turbulence within the first tube rows, cf.
Price & Paidoussis (1987) or Sandifer & Baily (1984). A possible explanation for the
phenomenon of trip-wire stabilization is an increased level of turbulence and, thus, a disturbance
of the flow channels between the tubes, already starting from the first row. The aim of the present
study is to investigate experimentally the influence of increased flow turbulence on the stability
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boundaries. Here, the increase of turbulence is generated already at the inlet of the tube array.
The investigation holds for the first four tube rows, where the self-induced turbulence is not
fully developed.

To represent the stability behaviour, Connors (1970) introduced a diagram which shows
the stability boundaries as a function of the mass-damping parameter 5, = ud/(pd*) and the
reduced gap velocity V, = U/(fid). This standard stability diagram gives a general idea of
the stability behaviour of tube arrays in cross-flow which is essential for heat exchanger
design. Since a reliable theoretical model is missing, an experimental investigation of the
stability boundaries is required. An overview on the stability behaviour of tube bundles
subjected to cross-flow by means of Connors diagrams is given by Weaver & Fitzpatrick
(1987) and Chen (1984). Fluidelastic instability appears in two different mechanisms: as
fluid-damping-controlled instability (galloping) and as fluidelastic-stiffness-controlled in-
stability, cf. Chen (1983).

The galloping mechanism results generally in tube vibrations in the cross-flow direction.
For tube excitation, those components of the fluid force are important which are propor-
tional to the tube velocity. In the case of the fluidelastic-stiffness-controlled mechanism, the
instability results from coupling effects of several tubes in an array by the fluid. The fluid
force terms which depend on the displacement of a tube and its neighbours are decisive.
Here, stability investigations require a fully flexible bundle of tubes.

Which of these mechanisms is dominant depends on the configuration of the tube
array as well as on the fluid density. Moreover, it is possible that a combination of
both effects occurs. In the case of the fluid-damping-controlled instability, the equilibrium
position of a single tube becomes unstable. The problem of analysing the stability behaviour
of a tube array by investigating only a single flexibly mounted tube in an otherwise fixed
row or array is discussed in the literature, cf., e.g. Price & Paidoussis (1986). However, the
mechanism of fluid-damping-controlled instability can be isolated, using a single flexibly
mounted tube in an otherwise fixed array. For certain array configurations, where the
galloping mechanism is dominant, the stability boundaries are the same as for a fully
flexible bundle. In these cases the stability boundaries of a fully flexible bundle can be
determined by the stability of a single flexible tube, cf. Lever & Weaver (1986). In
Austermann & Popp (1995) a comparison of the stability boundaries of a single flexibly
mounted tube with that of a fully flexible bundle can be found. For the tube configuration
investigated here, the agreement for the lower and decisive stability boundary is very
good.

The experimentally determined stability boundaries for small upstream turbulence inten-
sity (laminar flow) in a wind tunnel are well known, cf., e.g. Austermann & Popp (1995). The
phenomenon of primary damages in the first few rows leads also to the question of the
influence of upstream turbulence on the stability behaviour of the tubes. Soper (1982)
observed an influence of grid-generated turbulence on the stability behaviour of tube
bundles in cross-flow. Also, Southworth & Zdravkovich (1975) and Gross (1975) found that
turbulence completely changes the fluid elastic response of in-line tube banks. The effect of
the generated turbulence on the tube bundle stability is contradictory in the literature.
Gorman (1979) reaches the conclusion that upstream generated turbulence using grids and
screens can suppress high amplitudes of tubes in a bundle. He hypothesizes that a grid
breaks up the longitudinal correlation of fluid forces acting on flexible tubes. On the
contrary, Rzentkowski & Lever (1995) investigated this problem theoretically based on
a nonlinear model; they found that turbulence can trigger fluidelastic instability in the case
of unstable bifurcations.
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2. DESCRIPTION OF TURBULENCE

According to a classification by Rotta (1972), turbulent flow is an irregular three-dimen-
sional eddy flow. The three-dimensional velocity distribution u of a flow fluid can be
described as the sum of the mean velocity u and a disturbance velocity u’. One component
can be expressed as

u; (X, t) = uy(x, 1) + u/ (X, ). (1)

In the present study, the special case of wind-tunnel turbulence is considered. Here, with
a screen in front of a nozzle, the flow is calmed and rectified before it reaches the test-section.
The turbulence can be considered as homogeneous and spatially independent (isotropic).
More details can be found in Batchelor (1953) and Rotta (1972).

Under the assumption of a stationary ergodic Gaussian velocity process u;, it is possible
to describe the turbulence in the test-section of a wind tunnel by the mean,

T
u;(x) = lim J ui(x, ) dt, (2)
T-w J =T
and the variance,
_ T
gt (x) = u*(x) = lim J [ui(x, 1) — u;(x)]* dr. 3)
T-ow J—T
These quantities provide the turbulence intensity Tu,
Tu=2, (4)
Uy

where the index “1” describes the in-flow direction, x.
Another parameter which specifies the spatial character of the flow field is the length scale
L. We consider the correlation function.

Rij(Xs t, r, T) = u;(x, t)u}(X*s t*)a (5)

where r = x* — x is the correlation width and © = t* — t is the correlation time. In this
general form, R;; describes all space- and time-dependent correlations of the velocity
components. The length scale is defined as

1 0
Lij,k _ J\ Rij(X, t, rk, 0) drk. (6)
ui(x, Huj(x, t) Jo

To describe the spatial character of isotropic grid turbulence the length scale L.,
calculated by the autocorrelation function R;{(t), is considered. The autocorrelation
function can be described with sufficient accuracy by

R112(T) _ exp( . U, |'E|>, (7)

01 Lx

cf. Fung (1968). Here, U, is the undisturbed upstream velocity, U,, = u;. Due to the Taylor
hypothesis (1938) of “frozen turbulence”, this yields immediately the length scale L., without
using equation (6). Experimental investigations verify this relation, which can be found, for
example, in Lindner (1993). The parameter L, characterizes an area with noticeably
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correlated velocities and can be understood as the average length of a turbulence eddy.
With respect to the stability investigations in this study, the reduced length scale

Lx, red — Lx/d (8)

is introduced, where d is the tube diameter.

3. GENERATION OF UPSTREAM TURBULENCE

The experimental investigations were carried out in both apparatuses used by Andjeli¢
& Popp (1989), as well as Austermann & Popp (1995). The arrays consist of aluminium
tubes with an outside diameter of d = 80 mm and a length of / = 800 mm. The arrays are
mounted within the test-section of a wind tunnel. The side walls of the test-section allow to
realize different tube patterns which are usual in heat exchangers: e.g., normal and rotated
triangular arrays, see Figure 1. With respect to the rotated triangular array, one flexibly
mounted tube in an otherwise fixed tube bundle has been investigated, since it characterizes
the stability of the fully flexible array (Austermann & Popp 1995). It is possible to vary the
row number, equilibrium position and damping of the tube. The tested rotated triangular
tube array with P/d = 1-375 consists of six rows of 15 cylinders altogether and six half-tubes,
as shown in Figure 2.

As a matter of fact, the stability boundaries for a fully flexible normal triangular bundle
are not in accordance with those of a flexibly mounted tube within a fixed array (Auster-
mann & Popp 1995). Therefore, the investigations for the normal triangular array with
(P/d = 1-25) are carried out with a fully flexible bundle of 18 flexibly mounted tubes, where
nine of them have variable damping and linear iso-viscoelastic mounting. The tube motions
in both apparatuses have been determined by a set of strain gauges, cf. Andjeli¢ & Popp
(1989) and Austermann & Popp (1995). The turbulence intensity of the free upstream flow is
about Tu = 1%. To determine the relation between the upstream velocity U, and the gap
velocity U, we have to look at the basic array configurations shown in Figure 1. Applying
the continuity equation for the normal triangular array yields

U=U,P/(P—d). )
For a rotated pattern the relation
U= U_,Psino/(P — d) (10)

is used, where o denotes the flow angle, see Figure 1.

Normal triangular Rotated triangular
ZAR
a=30 J u 4=60° o
Uoo oo
— 6o°| -
60°,
o B PAREAN
P

Figure 1. Heat exchanger tube configurations investigated here.
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Figure 2. Experimental set-up for increasing the turbulence at the inlet of the tube bundle.
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To vary the turbulence field in the test-section of a wind tunnel, turbulence grids are
generally used. Here, the grid is placed in front of the tube array at a specific but variable
distance X, see Figure 2. Figure 3 shows a photograph of the experimental set-up where on
the left-hand side one of the grids made of wood can be seen. The grid distance X is defined
as the distance between the grid and the inlet of the bundle. In this study, the inlet is the
plane in a distance b in front of the mid-point of the first row. The distance b was chosen
to b = P/2 for the rotated triangular array and to b = ﬁP/Z for the normal triangular
array.

Figure 4 shows the geometry of the grid. The flow separates at the bars of the grid and
merges behind them. This yields a broad-band turbulence distribution. The turbulence has
been measured by a hot-wire anemometer. The hot wire was placed at 24 points vertical to
the flow at the inlet of the tube array, see Figure 2. The outer points of the measured field
were located 50 mm in the y-direction and 100 mm in the z-direction away from the wall of
the test-section to avoid undesired effects caused by the boundary layer. In the following,
the measured fluid velocity is called u;.

The turbulence behaviour of the flow behind a grid has been investigated by many
authors. For example, Baines & Peterson (1951) showed that for grids and screens homo-
geneous flow is obtained at a distance of 20 bar widths behind a turbulence grid. At this
distance, maximum turbulence intensity Tu can be observed. The relation between the
surface areas of the grid bars and the grid meshes must be smaller than 50%. With
increasing grid distance X, the turbulence intensity Tu decreases and the length scale
L, grows. The experimental investigations in this study show a good agreement with the
theoretical considerations of the decay of turbulence by Frenkiel (1948).
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Figure 3. Test array with mounted turbulence grid in front of the tube bundle.

a Turbulence grid

Figure 4. Section of a turbulence grid which is placed in front of the tube bundle to realize homogeneous
upstream turbulence.
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In a first step, the probability density distribution of the generated turbulence in the
test-section has been investigated. Figure 5 shows the distribution of 4096 values of the
velocity fluctuation u'; for a certain grid configuration. The calculated normal distribution
is in good agreement with the measured points. Here, a possible dependence of the
turbulence on the fluid velocity U, has to be considered. However, Figure 6 shows that the
influence of the fluid velocity U,, or reduced gap velocity V, on the turbulence intensity Tu
can be neglected. Secondly, the grid distance X, the mesh size s, the bar width a, the
geometry of the bars and the tube bundle itself have an influence on the turbulence intensity
Tu and the length scale L.

Table 1 shows the grid configurations used in this study. For rotated triangular tube
arrays, grid configurations R1, R2 and R3 with various reduced distances X,.q = X/a have
been implemented, see Table 2. This table shows the determined values of Tu and L,. For
the normal triangular tube array the grid configurations N1, N2 and N3 are used. The
distances investigated with the corresponding turbulence values are given in Table 3.
Furthermore, the following symbols are used for the two different array configurations: A:
rotated triangular array; [>: normal triangular array.

Figure 7 shows the field of turbulence intensity Tu at the inlet of the rotated triangular
tube array with a pitch to diameter ratio of P/d = 1-375 without a turbulence grid
(Tu =35%, L, ..qg = 0-39). The turbulence parameters for a certain grid configuration are
defined by the average values of all 24 points of the field mentioned above. The turbulence
distribution, e.g. for grid configuration R1 and a reduced grid distance X,.q4 = 32-5, cf.
Table 2, is shown in Figure 8. It can be seen that the turbulence intensity Tu is homogene-
ous and larger than without the grid.

The investigations confirm the fact that increasing the grid distance X reduces the
turbulence intensity. The measurements in Figures 9 and 10 show satisfactory agreement

)

pu

-2 . -0.5
Velocity fluctuation #; (m/s)

Figure 5. Comparison of the measured fluid velocity distribution behind the turbulence grid R2 (0) with the
calculated normal distribution, p(u}) = [1//2nc?] exp( — u/203), 61 = 0-42.
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Figure 6. Measured turbulence intensity Tu as a function of the reduced gap velocity V, for several grid
configurations.

TABLE 1
Grid configurations used in this study

Notation Bar width, a (mm) Mesh size, s (mm)

Rotated triangular array

Grid R1 8 40
Grid R2 8 80
Grid R3 16 80
Normal triangular array
Grid N1 7 50
Grid N2 7 100
Grid N3 14 100
TABLE 2

Turbulence parameters for the rotated triangular array

X, 20 325 45
Grid R1 Tu 197% 134% 10:5%
L, . 025 026 029
X 225 275 375 50
GridR2 Tu 13:-8% 13-8% 11:9% 10-1%
L, 021 023 026 029
X 1875 25 31:25
GridR3 Tu 23-0% 18:3% 147%
L, 026 029 033
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TABLE 3

Turbulence parameters for the normal triangular array

Xred
Grid N1 Tu
L

x,red

red

Grid N2 Tu
L

x,red

red

Grid N3 Tu
L

x,red

28:6
16:5%
0-25

286
11:3%
0-24

429
14:5%
0-34

21-4
21-1%
0-28

571
11-:6%
0-38

571
10:9%
0-34

28:6
16:8%
0-3

Turbulence intensity, Tu (%)
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Figure 7. Measured turbulence intensity Tu in a field of 24 points at the inlet of the tube bundle without

turbulence grid.

with the turbulence decay given by Frenkiel (1948). The length scales L, have been
determined from the measured autocorrelation function using equation (7). Figure 11 shows
the comparison of the measured and calculated autocorrelation function for the grid
configuration N1. The value L, determined for all grids considered and tube bundle

configurations can be found in Tables 2 and 3.

4. INFLUENCE ON THE STABILITY BEHAVIOUR

A reliable determination of stability boundaries demands the exact knowledge of the
vibration behaviour of the system considered and requires a stability criterion (Chen 1988).
In this study, the amplitude criterion used also by Austermann & Popp (1995) has been
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Figure 8. Measured turbulence intensity Tu in a field of 24 points at the inlet of the tube bundle for grid
configuration R1.
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Figure 9. Dependence of the turbulence intensity Tu on the grid distance X for the rotated triangular
configuration: e, grid R1; M, grid R2; , ®, grid R3; -- -, calculated.
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Figure 10. Dependence of the turbulence intensity Tu on the grid distance X for the normal triangular
configuration: e, grid N1; W, grid N2; @, grid N3; -- -, calculated.
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Figure 11. Determination of the length scale L, from the measured auto-correlation function;
a="17s=50,x=2300; L, =27mm.

applied. The stability is investigated considering the amplitude behaviour depending on the
reduced gap velocity V, for a fixed mass-damping parameter ,. A sudden change to large
amplitudes in the cross-flow direction characterizes the stability boundary. For more details
see Austermann & Popp (1995).
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4.1. RoTATED TRIANGULAR ARRAY (P/d = 1:375)

Figure 12 shows the measured reduced amplitude as a function of the reduced gap velocity
V. and the mass-damping parameter o, for a single flexibly mounted tube in the critical third
row of an otherwise fixed array with ideal geometry.

In the critical third row, not only do the largest amplitudes occur, but also the smallest
values of the critical reduced gap velocity are found; see Austermann & Popp (1995) and
Figure 14. The investigations are limited to arrays with an ideal geometry, which is most
sensitive to fluidelastic instability.

In the stable region the tube moves with small amplitudes in the cross- and in-flow
directions due to turbulent buffeting. In the unstable mode the tube executes galloping
motions exclusively in the cross-flow direction. To protect the experimental set-up, the
measurements have to be stopped if the tube reaches a reduced amplitude of about 12%.

Figure 13 shows the amplitude as a function of the reduced gap velocity V, and the
mass-damping parameter J, for the critical third row, similarly to Figure 12, but for
increased turbulence. Here, the lowest grid-generated turbulence intensity
(Tu = 10-1%, L, ..q = 0-29) is adjusted, see Table 2. The significant stabilization due to
turbulence can easily be seen. This effect appears also for other selected grid configurations,
ie. for larger turbulence intensities. There is no predominance of the fluid-damping-
controlled excitation mechanism anymore.

The investigations have been carried out at the first four rows of the tube array. The
stability diagram for the first rows can be seen in Figure 14 [presented by Austermann
& Popp (1995)].

Figure 15 shows the stability diagram for the same array configuration considered in
Figure 14, but with increased turbulence. For very small values of the mass-damping

Measurements stopped

—
(¥
)
9)
s
B

I i NS Unstable
region

oD

Reduced amplitude, é/d (%)

(=]

10
Stable region o 7
A ’%) ° . Wltho!lt
%% %, Stability boundary trip-wires
e 9 o 30

10
Reduced fluid velocity, V;

Figure 12. Measured reduced amplitudes as a function of V, and J, for a single flexibly mounted tube in the
critical third row of an otherwise fixed array.
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Figure 13. Measured reduced amplitudes as a function of V, and J, for a single flexibly mounted tube in the
critical third row of an otherwise fixed array with increased turbulence (grid R2, Tu = 10-1, L, ,.q = 0-29).

parameter J,, the first as well as the third row become unstable. The stability boundaries of
the second and fourth rows disappear for the ideal array geometry. Here, the stability
investigations with respect to increased turbulence yield exclusively small amplitudes due to
turbulence excitation.

4.2. NorRMAL TRIANGULAR ARRAY (P/d = 1-25)

For the normal triangular array there is not sufficient agreement between the stability
behaviour of a single flexibly mounted tube in an otherwise fixed array and the stability
boundary of a fully flexible bundle of the same geometry. For this array configuration it is
generally accepted that the fluid-damping-controlled mechanism is not the predominant
one. Thus, investigations for this configuration have been carried out using the fully flexible
bundle used also by Andjelic & Popp (1989). Nine of these tubes (see Figure 16) are
equipped with linear iso-viscoelastic tube mountings and variable damping. The amplitude
criterion mentioned is applied to any flexibly mounted tube that becomes unstable. The
stability boundary for undisturbed flow (Tu = 5-4%, L, = 0-38) coincides with that meas-
ured by Andjelic & Popp (1989). The investigations with increased turbulence were carried
out with three different grid configurations, see Table 3. Note, that for this array configura-
tion the turbulence intensity Tu at the inlet of the array is quite large (Tu = 5-4%) . Thus,
the influence of the grid-generated turbulence compared with the array-induced turbulence
probably is small for this array configuration.

Figure 16 shows that for small mass-damping parameters ¢, and increasing turbulence
intensity Tu there seems to be a small influence on the stability boundary, i.e. a slight shift to
higher reduced gap velocities V,. However, the differences of the stability threshold estima-
tion are nearly within the range of the measurement error.
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Figure 14. Stability diagram for a flexibly mounted tube in different locations in an otherwise fixed rotated
triangular array (P/d = 1-:375), from Austermann & Popp (1995).
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Figure 15. Stability diagram for one flexibly mounted tube in an otherwise fixed rotated triangular array
(P/d = 1-375) with increased turbulence (Tu = 10-1, L, ;.q = 0-29).
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Figure 16. Stability diagram of a fully flexible tube bundle for a normal triangular array (P/d = 1-25) with
various turbulence intensities at the bundle inlet.

5. CONCLUSIONS

The investigations described in this paper were motivated by the fact that a flow distur-
bance inside the tube array (e.g., by trip-wires) can change the stability behaviour of a single
flexibly mounted tube in the first few rows of an otherwise fixed array (Romberg & Popp
1996). Thus, the underlying question for the present study is the influence of a flow
disturbance by means of increased turbulence already occurring upstream (at the inlet) of the
array. The investigation holds for the first few tube rows, where the self-induced turbulence
in the bundle is not fully developed. The present experimental study shows that upstream
isotropic turbulence has a significant influence on the stability behaviour of a single flexibly
mounted tube in an otherwise fixed array, where the fluid-damping-controlled instability
(galloping) is the dominant excitation mechanism. Using different turbulence grids and
distances it was possible to vary the turbulence intensity Tu and the length scale L, of the
upstream air-flow. The results of stability measurements with increased turbulence intensity
Tu at the inlet of rotated and normal triangular arrays are different, depending on the array
configuration.

(i) Rotated triangular array (a single flexible tube). Turbulence intensities from
Tu = 3-5% to Tu = 23% and reduced length scales from L, 4 = 021 to L, 4 = 039 at
the inlet of the array have been generated. With respect to the stability behaviour for the
first four rows, a stabilization at increased turbulence has been found.

(i) Normal triangular array (fully flexible bundle). Turbulence intensities from Tu = 54%
to Tu = 21% and reduced length scales from L, g = 0-24 to L, ..o = 0-38 at the inlet of the
array have been generated in this case. For this tube configuration an increasing turbulence
has only a negligible influence on stability. The reasons for the different effects depending on
the array configuration could be (a) a different dominant excitation mechanism, (b) different
levels of self-induced turbulence, (c) different spatial correlations of the fluid forces. With
respect to the important last two items, further experimental investigations are necessary.
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APPENDIX: NOMENCLATURE

a bar width of turbulence grid (mm)

s mesh size of turbulence grid (mm)

b distance between bundle inlet and bundle (m)
d tube outside diameter, d = 0-08 m

h first natural tube frequency (f; = 9.3 Hz)
) tube length, [ = 0-8 m

L length scale (m)

L, length scale in x-direction (m)

L, e reduced length scale L, .., = L/d

P tube pitch (m)

r correlation width (m)

R correlation function (m?/s?)

t time (s)

Tu turbulence intensity, Tu = o, /u; (%)

u fluid velocity (m/s)

u, mean value of u in in-flow direction (m/s)
U, undisturbed upstream velocity U, = u; (m/s)
U gap velocity (m/s)

V. reduced gap velocity, V, = U/(f,d)

X in-flow direction

X grid distance (mm)

Xiea reduced grid distance, X, = X/a

y cross-flow direction

o relative angle of undisturbed flow (°)

o logarithmic decrement of damping

d, mass-damping parameter, 5, = ud/(pd>)
u tube mass per unit length, u = 3-04kg/m
v kinematic viscosity, v = 0-151 cm?/s

p fluid density, p = 1-197 kg/m?

g, standard deviation of velocity fluctuation u, (m/s)
T correlation time (s)
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